Волна автоматизации

Сотрудник склада подходит к груде коробок. Коробки различных форм, размеров и цветов беспорядочно навалены друг на друга.
Представьте себя на секунду на месте рабочего, которому поручено перенести эти коробки в другое место, и задумайтесь, какую сложную задачу ему предстоит решить.
Многие из коробок обычного картонного цвета; к тому же они плотно прилегают друг к другу, из-за чего трудно найти края. Где именно заканчивается одна коробка и начинается другая? Между некоторыми коробками есть большие зазоры, и они не выровнены относительно друг друга. Некоторые повернуты так, что один край выходит наружу. На самом верху под углом стоит маленькая коробка между двумя коробками большего размера. Большинство коробок сделано из простого коричневого или белого картона, тогда как на некоторых видны логотипы компаний. Несколько коробок предназначены для демонстрации на витрине — привлекать внимание покупателей яркими цветами.


Мозг человека, разумеется, способен практически мгновенно разобраться в этой сложной визуальной информации. Рабочий без труда определяет габариты и ориентацию каждой коробки и, кажется, на каком-то инстинктивном уровне понимает, что начинать нужно с коробок, стоящих на самом верху, а перемещать остальные следует так, чтобы не нарушить равновесие всей груды.
Это как раз тот тип проблем зрительного восприятия, необходимость преодоления которых послужила одним из факторов формирования человеческого мозга. В том, что рабочий успешно справляется с задачей перемещения коробок, не было бы ничего примечательного, если бы не тот факт, что в данном случае в качестве рабочего выступает робот. Точнее говоря, змееподобная роботизированная рука с пневматическим захватывающим устройством на конце. Чтобы разобраться в ситуации, роботу требуется больше времени, чем человеку. Он долго разглядывает коробки, слегка корректируя параметры наблюдения, обрабатывает информацию еще в течение некоторого времени и наконец делает движение вперед и берет коробку с самого верха. Впрочем, эта медлительность объясняется лишь одним — колоссальной сложностью вычислений, которые требуются для выполнения этой, кажущейся столь простой задачи. История развития информационных технологий подсказывает, что уже очень скоро этот робот будет работать намного быстрее.
И действительно, если верить инженерам стартапа Industrial Perception, Inc. в Кремниевой долине, которые спроектировали и собрали этого робота, в перспективе он будет работать со скоростью одна коробка в секунду. Для сравнения — пределом человеческих возможностей является перемещение одной коробки в шесть секунд{4}. Само собой разумеется, робот может работать без остановки; он никогда не устанет, не надсадит спину, ну и, конечно же, не подаст заявление на получение пособия по нетрудоспособности.
В основе разработки Industrial Perception лежит сочетание технологий зрительного восприятия, пространственных вычислений и развитых средств манипулирования объектами. Можно сказать, что ее появление означает преодоление последнего рубежа на пути к полной автоматизации, за которым машины начинают претендовать уже и на те немногочисленные относительно рутинные виды ручного труда, которые пока еще выполняются людьми.
Разумеется, в использовании роботов в промышленном производстве нет ничего нового. Они уже стали незаменимыми практически во всех отраслях промышленности — от автомобилестроения до производства полупроводников. На заводе производителя электромобилей Tesla в Фремонте, в штате Калифорния 160 универсальных промышленных роботов собирают приблизительно 400 автомобилей в неделю. Как только шасси нового автомобиля оказывается в следующей точке сборочной линии, к нему опускаются сразу несколько манипуляторов и начинают работать в тесном взаимодействии друг с другом. Роботы способны самостоятельно менять инструменты, установленные на манипуляторах, что позволяет выполнять различные задачи. Например, один и тот же робот сначала монтирует сиденья, а затем, поменяв инструменты, наносит клеящий состав и устанавливает лобовое стекло{5}. По данным Международной федерации робототехники, в период с 2000 по 2012 г. мировой объем продаж промышленных роботов вырос более чем на 60 %, достигнув $28 млрд в 2012 г. Абсолютным лидером по темпам роста является рынок Китая, где в период с 2005 по 2012 г. ежегодный темп прироста количества устанавливаемых роботов составил приблизительно 25 %{6}.
Несмотря на то что промышленные роботы — это уникальное сочетание скорости, точности и грубой силы, в большинстве своем они являются слепыми актерами в мастерски срежиссированном спектакле. Они нуждаются в точной синхронизации во времени и точном позиционировании. Очень немногие из них обладают средствами визуального восприятия, как правило, обеспечивающими возможность видеть в двух измерениях и только при определенном освещении. Например, они могут выбирать детали на плоской поверхности, но из-за неспособности воспринимать глубину поля зрения они плохо приспособлены к работе в средах даже с незначительной степенью непредсказуемости. Вследствие этого ряд рутинных работ на промышленных предприятиях по-прежнему приходится выполнять людям. Очень часто это работы, которые подразумевают выполнение промежуточных операций при передаче изделия от одного робота другому, либо выполняемые на последних этапах производственного процесса. В качестве примера может служить функция рабочего, который берет детали из ящика и вставляет их в манипуляторы робота на конвейере, или работа грузчиков, занимающихся загрузкой и разгрузкой машин, увозящих продукцию с фабрики или доставляющих детали.
Технология, благодаря которой робот Industrial Perception может ориентироваться в трехмерном пространстве, является яркой иллюстрацией плодотворного междисциплинарного взаимодействия, обеспечивающего появление новых разработок в неожиданных областях. Можно возразить, что впервые роботы научились видеть еще в ноябре 2006 г., когда компания Nintendo представила свою игровую приставку Wii. В комплекте с устройством Nintendo пользователь получал игровой контроллер принципиально нового типа: беспроводной модуль, в который было встроено недорогое устройство под названием «акселерометр». Акселерометр воспринимал движение в трех измерениях и формировал поток данных, который затем интерпретировался игровой приставкой. Теперь у игроков была возможность контролировать движения персонажей видеоигр с помощью движений собственного тела и жестов. Это полностью перевернуло представления об игровом процессе. Инновационная разработка Nintendo разрушила стереотип занудного игромана, не спускающего глаз с монитора и не выпускающего из рук джойстик, и открыла новую страницу в истории игр, сделав их активным времяпрепровождением.
Это также стало вызовом для других ключевых игроков в мире компьютерных игр, на который они не могли не ответить. Корпорация Sony, производитель PlayStation, пошла по пути копирования идеи Nintendo, представив собственный модуль с датчиками движения. Однако Microsoft решила превзойти Nintendo и разработать нечто принципиально новое. С выходом дополнения Kinect к игровой консоли Xbox 360 необходимость в контроллере движений отпала вовсе. Чтобы добиться этого, инженеры Microsoft спроектировали похожее на веб-камеру устройство с возможностью трехмерного машинного зрения, основанной на технологии обработки изображений небольшой израильской компании PrimeSense. Kinect «видит» в трех измерениях, используя специальное устройство, которое, по сути, представляет собой радар, работающий со скоростью света: оно испускает пучок инфракрасных лучей в сторону находящихся в помещении людей и объектов, а затем определяет расстояние до них, рассчитывая время, требуемое для того, чтобы отраженный луч вернулся в инфракрасный датчик. Для взаимодействия с консолью Xbox игрокам достаточно жестикулировать или двигаться в поле зрения камеры Kinect.
По-настоящему революционной особенностью Kinect была его цена. Сложная технология машинного зрения, которая прежде стоила десятки или даже сотни тысяч долларов и требовала использования громоздкого оборудования, теперь была доступна в компактном и легком бытовом устройстве по цене $150. Исследователи, работавшие в области робототехники, сразу же увидели в технологии Kinect огромный потенциал, который мог полностью преобразить их сферу деятельности. Уже через несколько недель после выхода устройства на рынок инженеры из университетов и изобретатели-одиночки научились управлять Kinect и начали публиковать в YouTube видеоролики с роботами, которые теперь могли видеть в трех измерениях{7}. Специалисты Industrial Perception также решили использовать в своей системе восприятия изображения технологию, лежавшую в основе работы Kinect, результатом чего стало появление относительно недорогого устройства, быстро приближающегося к человеку по умению воспринимать внешнюю среду и взаимодействовать с ней в условиях обычной для реального мира неопределенности.