Компьютер из… пробирки?!

Не знаю, как вы, а я со своим компьютером иногда разговариваю. Ругаюсь или, напротив, пытаюсь лаской заставить его сделать то, что он делать как будто не намерен. И происходит маленькое чудо: бездушная вроде железяка перестает давать сбои и выполняет требуемое.
Но честно сказать, я был весьма удивлен, когда выяснил, что вскоре, похоже, такая манера обращения с вашим персональным помощником может стать вполне узаконенной, поскольку есть вероятность, что компьютеры вскоре… оживут!

Все началось с молекулы. В современные интегральных схемах процессы переработки информации идут уже и на атомно-молекулярном уровне. По сути дела, модель молекулы уже своего рода процессор. Вот и организовали в свое время в подмосковном Зеленограде Институт молекулярной электроники, который занимался интегральными и полупроводниковыми схемами. Ближе к 80-м ученые стали интересоваться электрофизическими свойствами органических кристаллов. Была открыта их высокая проводимость.
Однако все это было еще только присказкой. А настоящая молекулярно-электронная сказка началась в 80-х в США, где благодаря работам Эли Авирама из Thompson IBM Research Centre и Фореста Картера из Navy Research Laboratory начались попытки сделать устройство по переработке информации на молекулярном уровне.
Авирам и Картер выдвинули интересную идею: имеет смысл заменить диоды и проводники молекулами. Принципиальную возможность такой машины Авирам продемонстрировал в эксперименте.
Эти работы и положили, по существу, начало молекулярной электронике, под которой надо понимать использование органических материалов там, где роль играет не ансамбль молекул, а сами по себе отдельные молекулы, которые используются для решения задач электроники. Появилась возможность создавать то, что ныне называется молекулярными компьютерами.
Сразу возникло несколько направлений. Они были в общем-то на поверхности. Первое – это использование органических материалов в традиционной полупроводниковой вычислительной технике. Второе – попытки создать вычислительные машины, где бы использовались физические процессы, происходящие в молекулах. А третье, наименее разработанное направление попыталось отойти от господствующей схемотехники и попытать счастья в нетрадиционных архитектурах и подходах.

Ученые предлагают заменить диоды и проводники молекулами

Чем же привлекал ученых молекулярный компьютинг? Во-первых, он отличается полной идентичностью чипов. Молекула – она молекула и есть. И природа сама побеспокоилась, чтобы такая схема оказалась дешевле нынешних БИСов. Во-вторых, молекула очень мала. Благодаря ее размерам молекулярная супер-ЭВМ может быть не больше спичечного коробка. В-третьих, на молекулярном уровне мала энергия переключения. В-четвертых, молекулярные устройства не подвержены дробовому, паразитному шуму.
Но кроме достоинств тут есть немало осложняющих моментов. К примеру, чтобы система реагировала однозначно на определенный сигнал, молекула должна быть достаточно большой. А чем больше молекула, тем меньше выигрыш.
Примерно то же самое стало выясняться и по другим характеристикам. Оказалось, что преимущества у молекулярной вычислительной техники есть, но они не очень явные. Поэтому, если не обнаружатся дополнительные их свойства, которых не имеют обычные компьютеры, решили исследователи, молекулярная «овчинка» вряд ли стоит выделки.

Пойди туда, не знаю куда… Однако вскоре выяснилось, что некий гибрид между нейрокомпьютером и молекулярной машиной может, в принципе, делать то, на что способностей у «нормальных» компьютеров не хватает. Вы знаете, наверное, что задачи делятся на вычислимые и невычислимые. Ведь нынешняя вычислительная техника может далеко не все. Но и среди вычислимых, по строгому определению, есть задачи, которые на практике решить невозможно. Существует, например, классическая задача о коммивояжере: есть определенное количество городов, которые ему надо объехать, не побывав ни в одном по два раза, и при этом выбрать наикратчайший маршрут. Вроде бы простенькая задачка? Но это если точек-городов не очень много. Есть некое предельное количество точек, превышая которые вы переводите задачу из вычислимых в нерешаемые.
С каждым годом, с дальнейшим развитием техники и науки, «плохих» задач становится все больше – в химии, сложной газодинамике, биологии, социологии…
Нейрокомпьютерный вычислительный механизм возник во многом как реакция на резкий рост числа нерешаемых задач. Ведь в нейрокомпьютерах благодаря свойствам нейронов возникает некий коллективный процессор. Сравнительно простые элементы собираются в систему, которая за счет связей между ними демонстрирует весьма сложное поведение. Формальные нейроны связаны друг с другом в то, что называется нейросетью, и получается, что свойства системы могут позволить работать с «плохими» задачами.
Если же мы проанализируем молекулярные процессы, то обнаружим, что механизм переработки информации в этом случае отличен от классической фон-неймановской модели. Вот, например, система лейкоцитов – это громадное количество однотипных устройств, в функцию которых входит, передвигаясь, постоянно производить анализ встреченных объектов, отвечая на вопрос, свой или чужой, и принимая решение, уничтожать их или не уничтожать. А ведь это – гигантский параллелизм! Если в Connection Machine – самой «параллельной» на сегодняшний день ЭВМ – около 64 тыс. процессоров, то здесь – 10 в бог знает какой степени! Лейкоциты сами не знают в какой!
Кроме параллелизма, молекулярные процессы демонстрируют сложные механизмы переработки информации – это нелинейные динамические процессы.
Все это, как вы понимаете, с немалой уверенностью позволяет говорить о том, что «молекулярные ЭВМ» смогут значительно понизить планку, отделяющую решаемые задачи от нерешаемых, «хорошие» от «плохих»!

Пока варится «супчик». Группа доктора химических наук, профессор, заведующий отделом информатики Международного научно-исследовательского института проблем управления Н.Г. Рамбиди работает над пока очень простыми моделями. «Мы берем квазиплоский слой, где небольшие области среды можно рассматривать как элементарные процессоры, и организуем связь между процессами, – рассказывал Николай Георгиевич. – Работаем пока в реляционно-диффузионных системах – интересуемся их информационными характеристиками. Процессы, идущие в тонком слое, освещаем, снимаем на видеокамеру, обрабатываем и подаем на персоналку: система может работать с изображениями – для этого есть проектор, система зеркал…»
И даже на этих элементарных моделях, как оказалось, можно заметить очень интересные вещи. Даже вполне самодельная система показывает, что возможно, например, реализовать на молекулярном нейрокомпьютере так называемый алгоритм Блума, который очень громоздко реализовывается в обычных ЭВМ, а также наша система может выделять контуры фигур, убирать шумы…
Впрочем, пока нейрокомпьютера, работающего на молекулярных принципах, не существует. Ни у Рамбиди, ни за рубежами Института проблем управления, Москвы, России. Но у Рамбиди есть нечто: странный «супчик», который варится в странном сосуде, который в свою очередь снимается на видео… Может, выпускник филфака никогда в жизни и не догадается, что «супчик» имеет отношение к информатике, однако всемирно известный журнал Computing (несколько сотен тысяч тиража для научного журнала на Западе – это вам не баран чихнул!) – его сотрудники готовили тематический выпуск по молекулярным ЭВМ – опубликовал единственную работу из России, и это была статья о его, Рамбиди, экспериментах. На нее в квартиру профессора на Соколе в Москве уже успел прийти отклик. Из Австралии. Там тоже, оказывается, занимаются сходными вещами, но, к радости Георгиевича, австралийцы пока еще не вышли из теоретической фазы работы, а у Рамбиди в отличие от них – уже «супчик»…
Каким окажется действующий нейромолекулярный компьютер? Видимо, это будет система связанных друг с другом пленок, где будут протекать процессы неимоверной сложности. Ведь каждая крупинка – это процессор. Однако пока от «супчика» Рамбиди до такого вот «слоеного пирога» еще сто верст и все лесом…

Бактерии тоже умеют считать. Впрочем, не только в нашей стране есть специалисты по живым компьютерам. Американцы движутся своим путем, взяв за основу системы, созданные на основе бактерий, проживающих в солончаках! В итоге на горизонте, похоже, появляются так называемые ДНК-компьютеры.
Использование бактерий вместо традиционных микросхем кажется совершенно невероятным и недостижимым. Ну скажите, пожалуйста, как это с помощью каких-то микробов можно складывать и вычитать цифры, набирать тексты, создавать рекламные видеоролики, выяснять, есть ли свободные места на ближайший поезд, и т. д.? Думаю, что люди совершенно также не представляли, а многие не представляют и сейчас, как это делают обычные компьютеры, построенные на основе кремниевых микросхем. Многие не знают, что процессор на самом деле ничего не умеет, кроме элементарных арифметических и логических операций, но на этом построены все те компьютерные чудеса, которые мы наблюдаем сегодня. Все гениальное – просто!
Утверждение о недостижимости создания биокомпьютеров в ближайшем столетии опровергает американский химик Джеймс Хикман, занимающийся вживлением нейронов лабораторных крыс в электронные устройства, который считает, что биоэлектронные технологии станут реальностью через 3–5 лет.
Возможности биоэлектронной техники потрясают воображение. Например, профессор из Университета Южной Калифорнии Леонард Адлеман поразил научное общество описанием того, как, используя молекулы ДНК, можно производить сложные математические вычисления эффективнее, чем на мощных суперкомпьютерах.
Так называемые ДНК-компьютеры потребляют в миллиарды раз меньше энергии, чем обычные компьютеры, и, используя триллионы молекул, ДНК могут одновременно выполнять миллиарды операций. Было подсчитано, что примерно полкилограмма молекул ДНК может хранить информации больше, чем память всех до сих пор созданных компьютеров, вместе взятых.
При этом молекулы должны храниться как взвесь в емкости, вмещающей около тонны жидкости. Получается этакий разумный аквариум, который может помнить все и вся. Нужно только время от времени подкармливать его и следить за чистотой, чтобы он лучше считал. Кстати, считает «пробирочный» компьютер просто великолепно. Для решения задачи, на которую он тратит всего неделю, традиционным компьютерам понадобилось бы несколько лет машинного времени.
В дополнение к «живым» процессорам Центр молекулярной электроники Сиракузского университета разработал «живую» память. Университетские ученые с помощью лазерного луча научились записывать и читать информацию на протеине (белке), который получают из живущих в солончаковых болотах микроорганизмов. Таким вот образом кремниевая электроника постепенно превращается в «болотную».
Ну а что же дальше? Что будет дальше, можно ответить словами одного из разработчиков биокомпьютерных технологий Уильяма Гибсона: «Наши праправнуки даже не будут знать, что такое компьютер, потому что они сами будут компьютерами. По мере эволюции интерфейса связи между человеком и компьютером сам по себе компьютер станет невидимым».
Что же это? Очередное покушение на человека? Подмена его бесчувственной машиной? Думаю, что нет. Человек останется таким, какой он есть, – со своими достоинствами и недостатками, радостями и печалями, надеждами и мечтами. Значительно вырастут лишь его интеллектуальные способности, и то, что сегодня за него делают компьютеры, он будет делать сам – легко и непринужденно, словно вдох и выдох, словно ритмичное биение сердца.